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LAMINAR PIPE FLOW WITH INJECTION 
AND SUCTION THROUGH A POROUS WALL* 

By 

So Wo Yuan* and A. Finkelstein«* 

Polytechnic Institute of Brooklyn 

SUMMARY 

The effect of injection and suction at the wall on the two-dimensional 

steady-state laminar flow of a fluid in a porous-wall pipe has been investigated 

in detail by the solution of the Navier-Stokes equations in cylindrical coordin- 

ates. An exact solution of the dynamic equations, reduced to a third-order non- 

linear differential eouation with appropriate boundary conditions, is obtainedo 

A perturbation method was used to solve the latter equation for both small and 

large flows through the porous wall. 

The velocity components are expressed as functions of the ratio of 

velocity through the porous wall to the maximum axial velocity at the pipe 

entrance, the coordinates of the pipe and the physical properties of the fluid,, 

The results show that the effect of injection at the porous wall of 

the pipe is to increase the friction coefficient at the wall.  For an injection 

Q 
ratio Y-  = »01 (500 ^Re ^ 2500) the friction coefficient at the wall is in- 

creased by 70-85^ over the zero injection case (Poiseuille case). 

+   This research was conducted under.the auspices of Project SQUID, jointly  
sponsored by the Office of Naval Research,, Department of the Navy, Office 
of Scientific Research, Department of the Air Force, «nd Office of 
Ordnance Research, Department of the Army0 

*   Research Professor of Aeronautical Engineering, 

*»  Research Associate of Aerc-autical Engineering» 



INTRODUCTION 

Studies of the problpm of cooling rocket and Jet motors by the 

diffusion of fluids through porous metal combustion chamber liners have 

been made by means of the^investigation of the boundary layer behavior 

along a porous plate with fluid injection [1]*.  Laminar flov. in a two 

dimensional channel with porous walls has also been investigated for 

extremely small suction velocity at the wall [2].  Since the problem 

of the flow through a porous-wall pipe with injection has not been 

thoroughly investigated, the purpose of this «ork was to obtain the 

basic phenomena of this type of flow which would provide a guidance 

for the investigation of turbulent pipe flow with injection or suction. 

Another important application of the results of this study is to 

the boundary layer control for decreasing drag and increasing lift of 

airplane wings.  In this connection the boundary-layer flow is sucked 

through the surface of the wing to a duct. The ensuing flow in the 

duct, simulates the problem of flow through a pipe with fluid injection 

at the nails, ' 

In the present investigation an exact solution of the Navier-Stokes 

equations in cylindrical coordinates with injection or suction as a 

boundary condition at the wall „aa obtained.  On the other hand the 

problems of flov, on a porous flat plate or curved wall «er. previously 

made by the approximate solution of the Prandtl boundary layer equations. 

The assumptions made in the present study were;  (.1.)  the fluid is 

incompressible, i.e. the mass density and thp vi inrai + v  of n-, a   ■ ■ ■-• '■ a ■'•''■■■  vxscosity ol the fluxa were 

Noumea to bo constant; (2)  the main How was assumed to be laminar, anS 

the fluid flowing in the ayl-i 1 rHi-or.-n ^^ .■,,--! +v  --T ■ , „, 
" U  airftcti0n and the fluid flowing through the 

^Numbers in brackets refe^rcTpTbli^rmAy^ 



porous wall, were assumed homogeneous; (3) the maxiimira axial velocity at 

the entrance of the porous-wall pipe is equal to the maximura axial velocity 

in the Poiseuilla's flow; and (O the fluid flowing through the porous wall 

is uniform throughout. 

Fundamental Equations 

The» three-dimensional steady flow of a viscous incompressible fluid 

is governed by the following set of basic, laws of fluid mechanics. From 

Newton's Second law, the Navier-Stokes equations were derived as follows;- 

{%'*)%   =  - i  v£  +   W2% I 
(1) 

From the principle of conservation of matter, 

(2) 

If a curvilinear coordinate system is introduced with the origin at 

the center of the cross-sectionvhere x is taken in the direction of the 

flow, r in the radial direction and 9 the azimuthal angle, and the ordinary 

vector curvilinear coordinöte transformations are used, the Navier-Stokes 

and continuity equations become 

t) u , . <£ U        I it       r r)'u ,  i i3 .  ^2" •f TT rr + 

(3) 



3. 

<XruJ    ,    £W _ n 
J x     *    jr    -   u 

(5) 

where u and v represent the x and T   components of the velocity at any 

point (see Fig. 1) and  J^ - 0 because of axiaily symmetric flow. 

The above equations will be used to investigate the fluid flow in 

a circular pipe with a porous wall through which uniform fluid Injection 

or suction is applied. The boundary conditions are " 

at r = 0 .     r =   ii^ 0 

at r = R ,      a -O \r = -Vi = Ccnsi (6) 

For a two-dimensional incompressible flow a steam function exists 

such that. 

(7) 

and the continuity equation (5) is satisfied. 

For a constant fluid injection or suction at the porous wall and the 

given boundary conditions, the following stream function is introduced- 

^   =:  [fl+   QJt  ]-f(n) 

' a\ U 
r 2 

WherG      7  ;I   %) '   '     The  instant  A  is  determined   fr w the  condition  at 

9=0  and x =  0 -ihere  the maximum velocity    Üa for Polsauille's  flow 

exists.     The  constant B  is. determined   fron-, the  law   of   conservation   of 

matter.     The   stream function  can  then be  exoressad   as; 

^} 



(9) 

From Eqs. (5) and (?) the velocity components in the direction of 

flow and the radial direction are given by 

^"'ljT^*iir]f''V 
(10) 

i<i) 

(ID 
where \~    *£      and Re . -^   .  The function ^        appearing i? 

the above equations is the only unicnown yet to be determined in terns of 

the distance parameter r).  Sq. (11) indicates that the radial velocity 

becomes a function of q   only.  This is because of 'he assumption of 

constant velocity vo at the v»all. 

3y introducing the expressions of u ana v from Lqs. (lü) and^ll) into 

the Eqs. (3' and (A) there result 

' H 4 U. 
c -   ^[^r4ii^(f^")^ir^")j (12) 

/ ^ 2 

(13) 

of both sides of it with respect to x yields 

9 

of 7 only, differention 

- ■  -4  = (J 

U) 



Hence differentiating Eq.   (12)  with respect  to    n    gives 7 

^    r o,. / //2   ^" 
c/ ? 

CtK (f-ff") ~uCqf"+fh)l - o 

(15) 

which is to be satisfied for all x. 

Integrating Eq, (15), one obtains 

7^"./"- \(r-ff") = c 

for     \^: I   ,  and 

(16) 

(17) 

for     \> 1    i  where      c       and    k     are  the  constants  of integration to be 

determined.     The boundary conditions  are  obtained with the  aid of 2qs.   (6), 

(10)   and   (11).     Thus: 

j(0)      =   f'(i}   =    C _ Lm      sfn    -f'(n)   =   0 

f") = y 
(18^ 

Eq.   (16)   is  an  ordinary non-linear  differential equation  of the  third 

order which  resulted from the Navier-Stokes  equations and  the  continuity 

equation by  the  similarity transformation.With  the  aid  of  the  four  given 

boundary  conditions  an exact   solution  can be   obtained and  the  constant   of 

integration      C     determined. 



6. 

It can be seen that the limiting form of A3. (16), by letting £ 

approach to zero, is the equation describing a flo* through a circular 

pipe with permeable vails. The solution of this equation «hich satisfies 

all the four boundary conditions given In fiq. (18) is the well-known 

Poiseuille.s law for pipe flow.  If small values of X are treated as 

a pertubation parameter a solution of Eq. (16) can be obtained «hich will 

be discussed in the next section. 

On the other'hand, if lar^e values of A are treated as a pertubation 

parameter the third order differential equation (1?) is reduced to a second 

order one.  The solution of Eq. (17) can aiso be obtained ^ the s;jrae ^^ 

since all four boundary conditions given in &,. (18) can be satisfied.  ' 

SOLUTION FOR SMALL \ 

The solution of Eq. (16) can be expressed for small value of X 

by a oo«er series developed near A = 0 as follows 

and 

/=   /o    -   A/,    .   AV^...   +x
nl 

c  =   c0   A  Ac   ^   A2 ^l 4 ■■ • ^ \ncr 

(19) 

.20' 
where the ^'s    and  ^,3   are ta,en to bQ independent of  ^ 

By substituting Eos. (19)   and  (?cA  int,-, Vn     fi-\ 0  •   Kxy}   ma  ^W mto Eq. (lo) and equating coefficients of 

like powers of \     ,  one obtains the following set  of equations: 

r  '" n  ; 
/ /o to        +     fD =      C0 

(21) 

r. ;   T 4- ~r -if ±      I    X   — r 
i    '1 -'1 / 0       /o  ■■',,       . 

■», 

{2?) 



r 7. 

"/    // 

(23) 

The boundary conditions to be satisfied by the f «s are from Eq. (18) 

'9 2- I 
(2A) 

The  second-order perturbation   solution  of Eq.   (16)   obtained by   solving 

Sqs.   (21)   to   (23)   is given   as  follows.- 

(25) 

(26) 

It  is  seen  from, the above  equations  that  the  second-order perturbation 

solution  is   sufficiently accurate  even  for     \  =  i.    The velocity  components 

in the-axial  ana  radial directions  are  obtained  by   substituting^.    (25)   i^l 

Bqs.   (10)   and   (11),   respectively as  foilovvS; 



a 
^TTTV, ' ^ *' ]['-u±(-^? -vf+if) 

'8      S-foo 

4 ,TL "i(- - 7i"l * e.i?Kj001^ nf-t',1) 
(27) 

l-h 
7 

^ 7in^o('^i-M°il+*i*f-Ki4+*f'^rt 

(28) 

The pressure distribution in the axial and radial directions are 

obtained upon the substitution of Eq. (25^ into Eqs. (12) and (13), and 

integrating.  Then one obtains 

j1 (o, o) - ■£(*. r) 
fuf   

2 
ee f(o) R~   P. 1'R 

+ 44ff~%tf'(oi-{<?>] & 

(29) 

The pressure drop in the £lcm  direction can be readily obtained rrora Sq. 

(29), i.e. 

-P(oj r) - ff*, V 

z 
.£> ■ A       ] 21 *        f', ■ f (O) £.*   n <' 'K' 

(30) 



9. 

The coefficient of skin friction at the wall can also be obtained from 

■2q.   (27),   and can be written 

^ _ 4 r    '■'    , „ A * 7r.. A  /3A2 -   -   ^ - - f + 4 * * irj*x - m 1 
fQ       Stoo 

(31) 

SOLUTION FOR UROE X 

The solution of äq. (17^ can be expressed for large .values^of A 

by a power series developed near -L = 0 as follows: 
A 

/ = ^ 'if. '*+> + ■■' <if. 
and 

A  '    A2" /\n    n 

(32) 

(33) 

where the f^s  and k »s  are taken to be independent of \    .    By 

substituting Eqs. {3?-)   and (33: into En. (17) and setting all coefficients 

—-  equal to zero, one obtains the following set of of like cowers of  ' 

equations:- 

hi"- rl = k. 
  (34) 

05) 
z 

? i.;:-.\ 



10. 

The boundary  conditions  to be  satisfied by the    f  • s   are from Eq.   (13) 

/„ (o)  =. fn'(ii = o        . Un v^nfjp = 0 
0-* o 

/or   all   1 

{5 7) 

The first-order perturbation of Eq. (17), obtained by solving the 

non-linear second-order Eq. (34) and the linear second order Eq. (35), 

is given as  follows: 

f 1   ■>    «J. Sn JT , /    I V) 

k   ~  - O.&iQöS   -    Aü.^3 
A 

(33) 

where 

(39) 

A 

V-. 

3 
I 

JL 
It: 0.7-2 1 o6 

and K ■1.3253     . 

L r,/ 2 j: 



11. 

The velocity components in the axial and radial directions are obtained 

by substituting Eq. (38) into Eqs.   (10) and (11), respectively as follows: 

_U = ^.7^,W * 4iiitf^ii+if:*-] 
(AO) 

2 A 
Jj ;Ci^77++f,<---l 

(U) 

The pressure distribution in the axial and radial directions are 

obtained upon the substitution of Eq. (38) into Eqs. (12) and (13), and 

integrating 

fl=L fh) 

The  pressure  drop in  the  flow  dire 

U2\   i.e. 

(42) 

ction can be readily obtained from Eo. 

$ .CL [o.^/tßt +   i(.i32ir3) If -L +* A I K* A 

/ fc)     '    /?e KJf< 

(43) 

■ .,      ■  '     . - '' '':''-. :v*- -  : ■ ■..:     ■ ■"■■»""■yiiiiiiiiiii 



12. 

The coefficient of skin friction at the wall can also be obtained from 

Eq. (40), which is 

RI£CUiJ£I0f: 

The velocity distributions in the main flow direction at an arbitrary 

cross-section of the pipe as calculated from Eq. (2?) for  A » fl and 

from Eq. UO) for \  = 10 arc shown in Fi^. 2.  It was noted that when 

A = 0 the profile becomes Poiseuille's paroboloid, and for  A > 0 

(fluid bein,^ injocted through the vvall^ the axial velocity increases and 

the velocity P-radient at the wall increases..  For A< 0 (fluid being 

withdrawn through the wall) both the a:<ial velocity and the velocity gradient 

at the wall decrease as compared with Poiseuillo's case. Th. above Pheaon,enum 

follows the law .,f conservation of matter.  In the present case the radial 

velocity, .vhich vanishes in Poisonille's cace, has a finite magnitude except 

at the center of the pipe where it vanishes. 

In Fig. 3 the maximum velocity distributions along the axis of the pine 

v^as shown.  The increase of maximum v locity with the increase of fluid 

injection at the wall and decreaao .ith suction *-ere illustrated in Fig.   4. 

It ^as interesting to learn that for an Injection ratio A  = o.of  '(R = 1000) 

the maximum velocity increases about 35^ over the Poiseuille's flow case. 



13. 

The pressure drop in the main flow direction is shorn in Fi^. 5.  It 

«as found that this pressure drop became appreciably larger, even for very 

Small fluid injection at the «all, than that in the Poiseuille-s flo« CaSe, 

and it became appreciably less for small suction case. The ratio between 

the pressure drop in the radial and the axial directions is approximately 

equal to the injection (or suction^ ratio |  and hence the pressure 

drop in the radial direction can be neglected in most practical applications. 

One of the essential parameters in the present investigation is the " 

Skin friction coefficient at the «all.  In Poiseuille-s flow the skin 

friction coefficient at the .all, C , has a constant yalue of _4 
J P m 

The «all frictional coefficient as calculated from Eqs. (31) and (U) 

indicates that the effect of injection in a pipe flo« is to increase the 

«all frictional coefficient and the suction to decrease the «all frictional 

coefficient.  In a boundary-layer flo« on a porous flat plate the effect 

of fluid injection at the «all is to increase the thickness of the boundary 

layer and decrease the velocity gradient at the «all, hence the «all friction 

decreases in this case.  On the other hand in a pipe flo« the effect of 

fluid injection at the .all is to accelerate the main stream velocity hence 

the velocity gradient at the «all «hich deten.ines the «all friction increases. 

FOr a fIUid ^r^10" rati0   ^  = ^ ^ ^  fictional coefficient 
increases by 35?; over the Pn-i «^n-nio 1 0 n ^        er the Poiseuille's flo« case.  The above phenomena «ere 

shown in Pies. 6 7 anH o TU~ 
igs. 6, 7 and 8. The comparison of the variation of local «all 

frictional coefficient «H+h n,,-!^ *    ■ 
ncient .ith fluid injection between the case of flo« in 

a porous-^all nine and on -. n^     1   , pxpe ana  on a flat plate was shown in Fig 9. 
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